Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(5)2023 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-37239384

RESUMEN

The slow-growing, nontuberculous mycobacterium Mycobacterium kumamotonense possesses two rRNA operons, rrnA and rrnB, located downstream from the murA and tyrS genes, respectively. Here, we report the sequence and organization of the promoter regions of these two rrn operons. In the rrnA operon, transcription can be initiated from the two promoters, named P1 rrnA and PCL1, while in rrnB, transcription can only start from one, called P1 rrnB. Both rrn operons show a similar organization to the one described in Mycobacterium celatum and Mycobacterium smegmatis. Furthermore, by qRT-PCR analyses of the products generated from each promoter, we report that stress conditions such as starvation, hypoxia, and cellular infection affect the contribution of each operon to the synthesis of pre-rRNA. It was found that the products from the PCL1 promoter of rrnA play a pivotal role in rRNA synthesis during all stress conditions. Interestingly, the main participation of the products of transcription from the P1 promoter of rrnB was found during hypoxic conditions at the NRP1 phase. These results provide novel insights into pre-rRNA synthesis in mycobacteria, as well as the potential ability of M. kumamotonense to produce latent infections.


Asunto(s)
Precursores del ARN , Operón de ARNr , Operón de ARNr/genética , Secuencia de Bases , Regiones Promotoras Genéticas , ARN Ribosómico/genética
2.
Front Oncol ; 10: 605380, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33381459

RESUMEN

Cancer is the second cause of death worldwide, surpassed only by cardiovascular diseases, due to the lack of early diagnosis, and high relapse rate after conventional therapies. Chemotherapy inhibits the rapid growth of cancer cells, but it also affects normal cells with fast proliferation rate. Therefore, it is imperative to develop other safe and more effective treatment strategies, such as gene therapy, in order to significantly improve the survival rate and life expectancy of patients with cancer. The aim of gene therapy is to transfect a therapeutic gene into the host cells to express itself and cause a beneficial biological effect. However, the efficacy of the proposed strategies has been insufficient for delivering the full potential of gene therapy in the clinic. The type of delivery vehicle (viral or non viral) chosen depends on the desired specificity of the gene therapy. The first gene therapy trials were performed with therapeutic genes driven by viral promoters such as the CMV promoter, which induces non-specific toxicity in normal cells and tissues, in addition to cancer cells. The use of tumor-specific promoters over-expressed in the tumor, induces specific expression of therapeutic genes in a given tumor, increasing their localized activity. Several cancer- and/or tumor-specific promoters systems have been developed to target cancer cells. This review aims to provide up-to-date information concerning targeting gene therapy with cancer- and/or tumor-specific promoters including cancer suppressor genes, suicide genes, anti-tumor angiogenesis, gene silencing, and gene-editing technology, as well as the type of delivery vehicle employed. Gene therapy can be used to complement traditional therapies to provide more effective treatments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...